On numerical simulations of integrate - and - re neural

نویسندگان

  • G. Mato
  • C. Meunier
  • L. Neltner
چکیده

It is shown that very small time steps are required to correctly reproduce the synchronization properties of large networks of integrate-and-re neurons when the diierential system describing their dynamics is integrated with the standard Euler or second order Runge-Kutta algorithms. The reason for that behavior is analyzed and a simple improvement of these algorithms is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speed-up methods for simulations of traveling waves in integrate-and-fire neural networks

We consider single and multiple spike traveling waves solutions in an integrate-and-#re neural network. Due to the special properties of this system it is possible to deduce the dynamical state of each neuron in the full network from a small subset, using recurrence relationships. Since the dimension of the subset is on the order of the number of the traveling waves, this greatly reduces the co...

متن کامل

Prediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network

This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

Prediction of Pressure Drop of Al2O3-Water Nanofluid in Flat Tubes Using CFD and Artificial Neural Networks

In the present study, Computational Fluid Dynamics (CFD) techniques and Artificial Neural Networks (ANN) are used to predict the pressure drop value (Δp ) of Al2O3-water nanofluid in flat tubes. Δp  is predicted taking into account five input variables: tube flattening (H), inlet volumetric flow rate (Qi  ), wall heat flux (qnw  ), nanoparticle volume fraction (Φ) and nanoparticle diameter (dp ...

متن کامل

Numerical simulation of effect of non-spherical particle shape and bed size on hydrodynamics of packed beds

Fluid flow has a fundamental role in the performance of packed bed reactors. Some related issues, such as pressure drop, are strongly affected by porosity, so non-spherical particles are used in industry for enhancement or creation of the desired porosity. In this study, the effects of particle shape, size, and porosity of the bed on the hydrodynamics of packed beds are investigated with three ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998